Imaging DivIVA dynamics using photo-convertible and activatable fluorophores in Bacillus subtilis

نویسندگان

  • Juri N. Bach
  • Nadine Albrecht
  • Marc Bramkamp
چکیده

Most rod-shape model organisms such as Escherichia coli or Bacillus subtilis utilize two inhibitory systems for correct positioning of the cell division apparatus. While the nucleoid occlusion system acts in vicinity of the nucleoid, the Min system was thought to protect the cell poles from futile division leading to DNA-free miniature cells. The Min system is composed of an inhibitory protein, MinC, which acts at the level of the FtsZ ring formation. MinC is recruited to the membrane by MinD, a member of the MinD/ParA family of Walker-ATPases. Topological positioning of the MinCD complex depends on MinE in E. coli and MinJ/DivIVA in B. subtilis. While MinE drives an oscillation of MinCD in the E. coli cell with a time-dependent minimal concentration at midcell, the B. subtilis system was thought to be stably tethered to the cell poles by MinJ/DivIVA. Recent developments revealed that the Min system in B. subtilis mainly acts at the site of division, where it seems to prevent reinitiation of the division machinery. Thus, MinCD describe a dynamic behavior in B. subtilis. This is somewhat inconsistent with a stable localization of DivIVA at the cell poles. High resolution imaging of ongoing divisions show that DivIVA also enriches at the site of division. Here we analyze whether polar localized DivIVA is partially mobile and can contribute to septal DivIVA and vice versa. For this purpose we use fusions with green to red photoconvertible fluorophores, Dendra2 and photoactivatable PA-GFP. These techniques have proven very powerful to discriminate protein relocalization in vivo. Our results show that B. subtilis DivIVA is indeed dynamic and moves from the poles to the new septum.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polar targeting of DivIVA in Bacillus subtilis is not directly dependent on FtsZ or PBP 2B.

DivIVA is involved in Bacillus subtilis cell division and is located at the cell poles. Previous experiments suggested that the cell division proteins FtsZ and PBP 2B are required for polar targeting of DivIVA. By using outgrowing spores, we show that DivIVA accumulates at the cell poles independent of the presence of FtsZ or PBP 2B.

متن کامل

The Bacillus subtilis DivIVA protein has a sporulation-specific proximity to Spo0J.

The Bacillus subtilis DivIVA protein controls the positioning of the division site and the relocation of the chromosome during sporulation. By performing coimmunoprecipitation experiments, we demonstrated that a myc-DivIVA protein is in proximity to FtsZ and MinD during vegetative growth and Spo0J during the first 120 min of sporulation.

متن کامل

Two-step assembly dynamics of the Bacillus subtilis divisome.

Cell division in bacteria is carried out by about a dozen proteins which assemble at midcell and form a complex known as the divisome. To study the dynamics and temporal hierarchy of divisome assembly in Bacillus subtilis, we have examined the in vivo localization pattern of a set of division proteins fused to green fluorescent protein in germinating spores and vegetative cells. Using time seri...

متن کامل

Isolation and characterization of topological specificity mutants of minD in Bacillus subtilis.

In rod-shaped bacteria such as Bacillus subtilis, division site selection is mediated by MinC and MinD, which together function as a division inhibitor. Topological specificity is imposed by DivIVA, which ensures that MinCD specifically inhibits division close to the cell poles, while allowing division at mid-cell. MinD plays a central role in this process, as it positions and activates MinC an...

متن کامل

Cytological characterization of YpsB, a novel component of the Bacillus subtilis divisome.

Cell division in bacteria is carried out by an elaborate molecular machine composed of more than a dozen proteins and known as the divisome. Here we describe the characterization of a new divisome protein in Bacillus subtilis called YpsB. Sequence comparisons and phylogentic analysis demonstrated that YpsB is a paralog of the division site selection protein DivIVA. YpsB is present in several gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014